
Floor Diffusers

Type FB

in aluminium and plastic

Contents · Description

Description	2
Construction · Dimensions	3
Dimensions GA · GAM	4
Installation Examples	5
Installation · Fixing Details	6
Materials	7
Installation Instructions	8

Load Capacity	
Nomenclature · Technical Data	10
Acoustic Data	11
Aerodynamic Data	13
Technical Data Size 150 – Multiple Array	15
Order Details	16

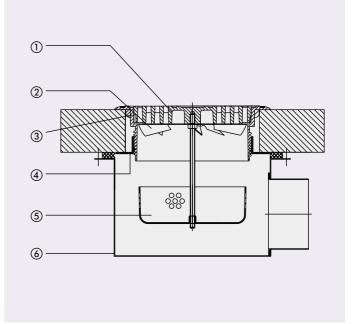
FBA Construction

Where convection current effects exist in the occupied zone it is appropriate to supply air through the false floor system.

Convective currents of air can be caused by heat from people, machines or electrical equipment. Where computers and other electronic equipment are used in offices, air conditioning systems which discharge air upwards from the floor are becoming more popular. This principle allows the local heat loads to be targeted directly.

When ordering the swirl element for adjustment of discharge direction from vertical to horizontal or vice versa, Trox can preset the swirl element if the required direction of discharge is specified on the order. If adjustment of discharge direction becomes necessary on site, this can be easily carried out by turning the swirl element accordingly.

1 Diffuser Core


② Swirl element for adjustment of air discharge direction

(5) Dirt Trap

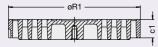
③ Trim Ring

6 Plenum Box

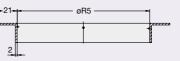
Floor diffusers are not fitted directly beneath where people sit. However, they can be used at a distance of 40 cm from seating. Floor diffusers do not cause any acoustic problems. By re-arranging working layouts, floor panels with integral diffusers can be easily replaced without major costs.

The floor diffusers offered by Trox are made in either aluminum or plastic, and form attractive design elements for architects and consultants due to the excellent variety of surface finishes and colours.

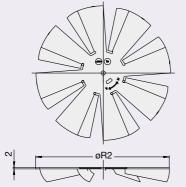
Construction

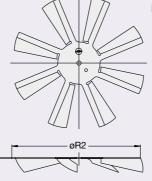

The floor diffuser core has a large number of radial ribs to produce a swirling discharge. This allows adjustment of discharge direction in critical operating conditions. The diffuser is available in aluminium or plastic. An adjustable control element is used to change the direction of discharge. There are two types of control element one adjusts discharge between vertical and horizontal (V,H) the other one provides a fixed vertical discharge (VF). The trim ring should preferably be used with carpets to prevent the edges fraying. A spacing ring is supplied on orders without trim ring for technical reasons and to adjust the height. There are two possible configurations for orders with a dirt trap -

- with rear adjustable volume control (SM)
- with face adjustable volume control (SV)

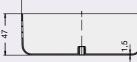

The seal between the plenum box flange and the floor tite must be provided by the client.

Size	ØD	G	E	H ₁	H ₂	K ₁	K ₂	ØR ₁	ØR ₂	ØR ₃		ØR ₅	c1	c2
150	98	50	160	125	71.5	200	198.5	149.5	138	137	150.1	150.3	01	22
200	123	48	200	150	84	250	248.8	199.5	188	187	200.1	200.3	21	22

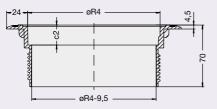

Diffuser core FBA/FBK

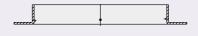


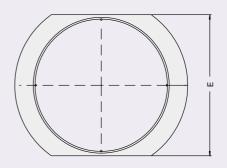
Clamping ring For installation in floor panels – min. 25 mm thickness

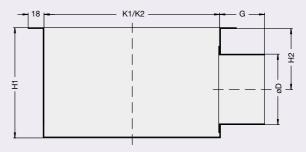


Adjustable swirl element to change direction of discharge Vertical/Horizontal (V,H) Vertical - fixed (VF)



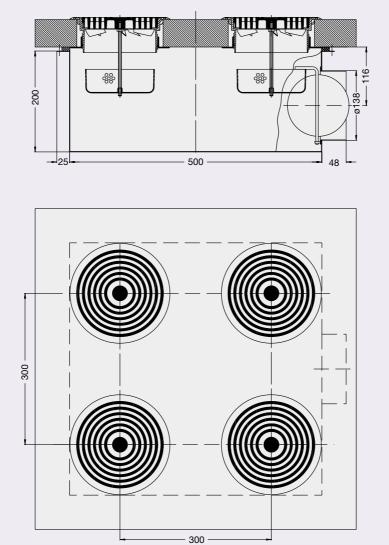

Dirt trap SM/SV





Clamping ring For installation in floor panels – max. 55 mm thickness

Plenum box A



Dimensions GA · GAM

The multiple diffuser plenum box is suitable for installation of 4 floor diffusers size 150 in the layout shown below. As it is not normally necessary to balance individual diffusers a damper is provided in the side entry spigot of the plenum box.

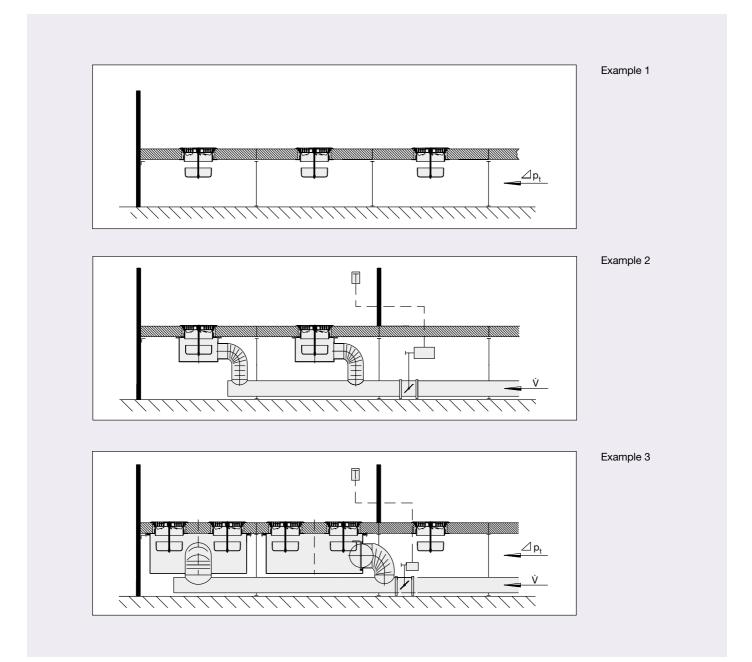
Type GA Multiple diffuser plenum box for 4 floor diffusers

Type GAM As GA, but with damper in the side entry spigot

Example 1

Positive pressure plenum floors are preferred for large areas. Here, plenum boxes are not required due to the uniform pressure distribution. If the objective is even distribution of air within the zone, it is not necessary to balance the diffusers individually.

Example 2


The use of plenum boxes is recommended for individual room control. This guarantees that the volume flow to each room can be controlled separately, e.g. by room thermostats. For duct systems with many branches, the dirt traps are fitted with dampers to ensure an even distribution of air can be achieved.

Example 3

For a combination of zone and individual room control, the floor diffusers for the room should have a ducted supply to the plenum boxes. The air is distributed over the zone via pressurised floor void. Individual rooms can be controlled, e.g. by room thermostats. A number of plenum boxes are shown in the example for the individual room.

Remarks

The use of the dirt trap is dependent on the condition within the room or how the room is used. The aerodynamic performance of the diffuser is not influenced by the dirt trap.

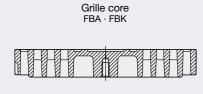
Installation

For installation in false floors with hard surface finishes, no trim rings are required.

The installation opening required is shown below.

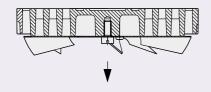
A clamping ring is supplied on orders with a trim ring. The clamping ring screws onto the thread of the trim ring by means of thread sections on the clamping ring locate on the thread pitch of the trim ring.

For installation in false floors with carpet covering, trim rings should be used to protect the carpet edges. The installation opening required is shown below.

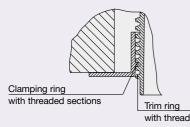

Fixing hardware is supplied for each trim ring.

The clamping devices are suitable for panel thickness from 25 to 55 mm.

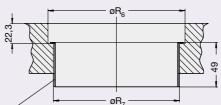
Size	R ₆	R ₇	R ₈
150	151	143	171
200	201	193	221


On installations without a trim ring the spacing ring supplied must be fitted for technical reasons and for adjustment of the height.

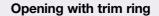
Opening without trim ring

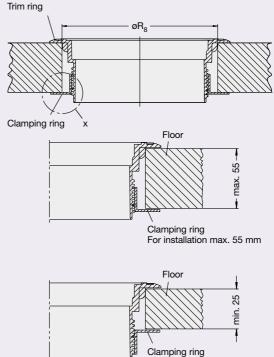



Grille core with adjustable swirl element FBA-...-V, H, VF FBK-...-V, H, VF



Detail X





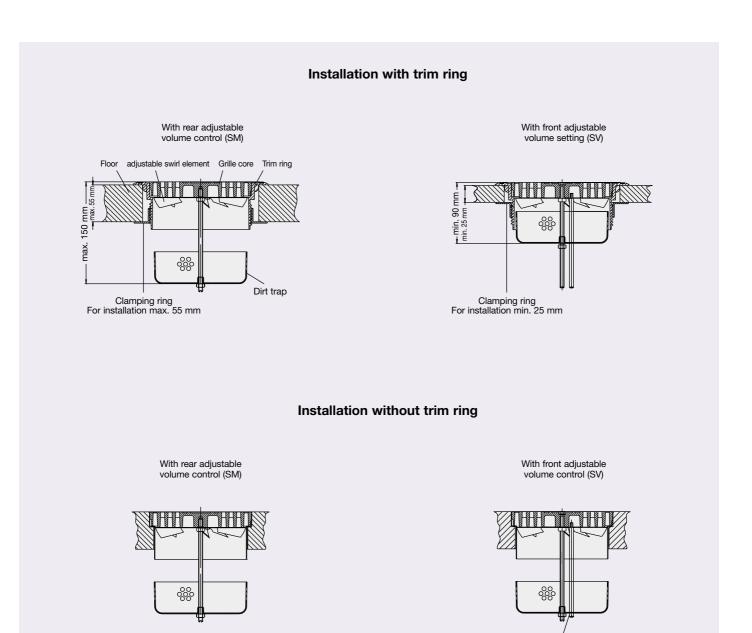
Spacing ring (Supplied for technical reasons and for adjusting height, for use without trim ring)

For installation min. 25 mm

6

Materials

Construction FBA


The adjustable swirl element, the clamping ring and dirt trap are black polyamide (PA-6V) flame retardant to UL standard 94. Plenum box and volume control are galvanised sheet steel. The surface of the plenum box is phosphate treated and painted black (RAL 9005).

Construction FBK

The floor diffuser and the trim ring are polyamide PA6 or on request, polyamide PA6-V0 in accordance with UL Standard '94 (flame resistant) and are available in the following colours: Dusty grey similar to RAL 7003; or black similar to RAL 9005. Other colours can be supplied on request.

The adjustable swirl element, the clamping ring, spacing ring and dirt trap are black polyamide (PA-6V) flame retardant to UL Standard 94. Plenum box and volume control are galvanised sheet steel. The surface of the plenum box is phosphate treated and painted black (RAL 9005).

Stabilising rod

Installation in floors without floor tiles

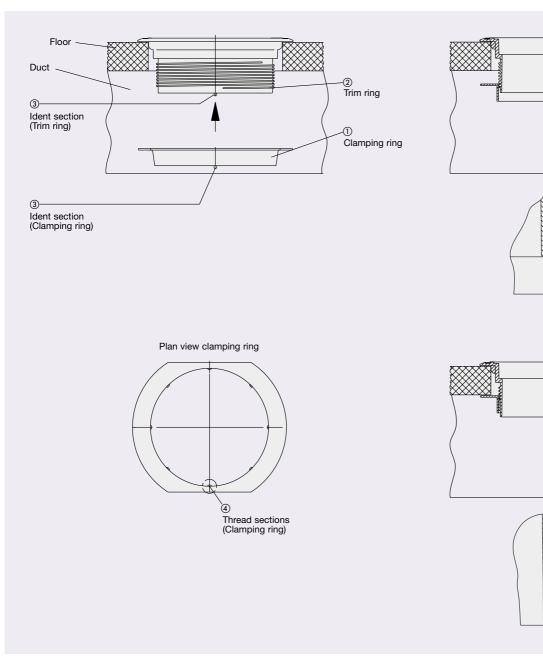
For installation in floors without floor tiles the clamping ring ① is first inserted into the duct or floor void and the trim ring ② then positioned into the opening.

When fitting the clamping ring the ident sections ③ on the clamping ring and trim ring must first be positioned above each other.

Using light upwards pressure turn the clamping ring in easy stages each time starting at the ident section on the trim ring.

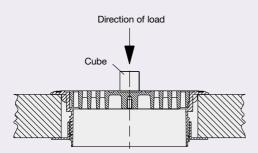
This guarantees easy threading of the first three thread sections ④ and after about 180° the ring will turn as a nut. In the case of deep ducts or floor voids the trim ring can be slipped over one arm and the clamping ring held in the hand.

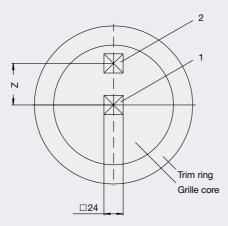
The arm, with both parts, can now be held with the clamping ring in the opening so that the trim ring slips down from the arm and slides into the opening.

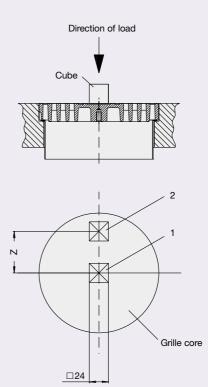

Detail X

777777777777

Detail Y



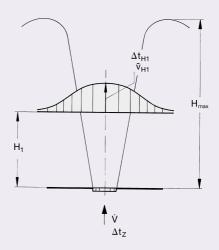

The clamping ring can then be screwed into position as described above.


		Breaking load in kN		
	Construction	Position of cube	Position of cube	
		1	2	
E	Size 150 without trim ring	27	15	
Aluminium	Size 200 without trim ring	25	8	
Im	Size 150 with trim ring	28	14	
∢	Size 200 with trim ring	22	9	
	Size 150 without trim ring	15	7	
Plastic	Size 200 without trim ring	6	3	
Pla	Size 150 with trim ring	12	6	
	Size 200 with trim ring	6	2	

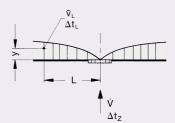
Load capacity with trim ring

Load capacity without trim ring

Size	Z
150	52
200	77


Note:

For construction without the control element the aerodynamic data for the diffuser with vertical discharge only are applicable.


Nomenclature

Ϋ́	in l/s:	Volume flow per diffuser
Ϋ́	in m³/h:	Volume flow per diffuser
L	in m:	Distance from centre of diffuser
у	in m:	Height of measuring point 10-50 mm above floor level
h ₁	in m:	Height above diffuser
h _{max}	in m:	Max. penetration height of supply air jet-depending on Δ t_Z or \dot{V}
V _{eff}	in m/s:	Effective jet velocity
\bar{v}_{L}	in m/s:	Max. time average air velocity in 10-50 mm above floor level
\bar{v}_{H1}	in m/s:	Max. time average air velocity at height $h_1 \\ above floor level$
Δt_{Z}	in K:	Temperature difference between supply air and room air
$\Deltat_{\rm h1}$	in K:	Difference between room and core temperature at height h_1
Δt_L	in K:	Difference between room and core temperature at distance L
$\Delta {\rm p_t}$	in Pa:	Total pressure drop
L_{WA}	in dB(A):	A-weighted sound power level
L_{WNC}	:	NC rating of sound power level
L_{WNR}	:	$L_{WNR} = L_{WNC} + 1$
Δ L ir	ndB/Oct.:	Relative sound power level with respect to L_{WA}
L _{pA} , L _p		A-weighting and NC rating respectively of room sound pressure level $\begin{array}{l} L_{pA} \ \approx \ L_{WA} & - \ 8 \ dB^{*} \\ L_{pNC} \ \approx \ L_{WNC} - \ 8 \ dB^{*} \end{array}$
L _W ir	ndB/Oct.:	Octave sound power level of flow regenerated noise $L_W = L_{WA} + \Delta L$

Air discharge: Vertical

Air discharge: Horizontal

Effective free area A_{eff} in m^2

Size	150	200
Vertical discharge (V)	0.00394	0.00560
Horizontal discharge (H)	0.00334	0.00560
Vertical - fixed (VF)	-	0.00820

* Room absorption

Correction to Diagram 1 Volume control using dirt trap

open	Δp_t	L _{WA} / L _{W NC} without AK with Al	
100%	x 1.0	_	_
40%	x 1.4	+ 4	+ 2
20%	x 2.3	+ 8	+ 7

Correction to Diagram 2

Volume control using dirt trap

15

10

7

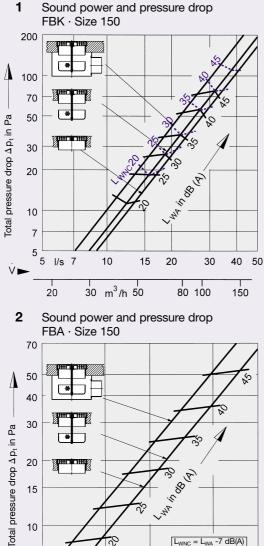
V.

10

open	۸n	L _{WA} /	L _{WNC}
open	Δp _t	without AK	with AK
100%	x 1.0	+ 0	+ 0
40%	x 1.3	+ 3	+ 0
20%	x 2.0	+ 7	+ 6

Correction to Diagram 3 Volume control using dirt trap

open	Δp_t	L _{WA} / without AK	L _{W NC} with AK
100%	x 1.0	+ 0	+ 0
40%	x 1.3	+ 3	+ 3
20%	x 2.0	+ 7	+ 7


Correction to Diagram 4

Volume control using dirt trap

open	Δp_{t}		
opon	- Pt	without AK	with AK
100%	x 1.0	+ 0	+ 0
40%	x 1.7	+ 6	+ 6
20%	x 3.5	+ 15	+ 7

Note:

The aerodynamic data for the discharge of air applies to constructions without adjustable swirl elements: discharging vertically!

NA

20

ð

50 m³/h 70

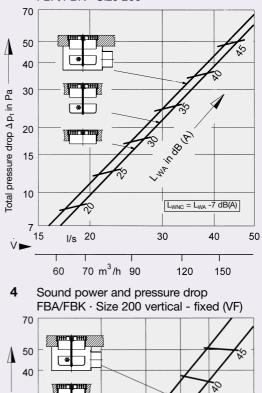
15

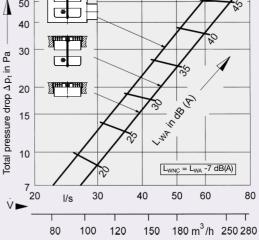
l/s

40

 $L_{WNC} = L_{WA} - 7 \text{ dB(A)}$

30


100


40

Т

140

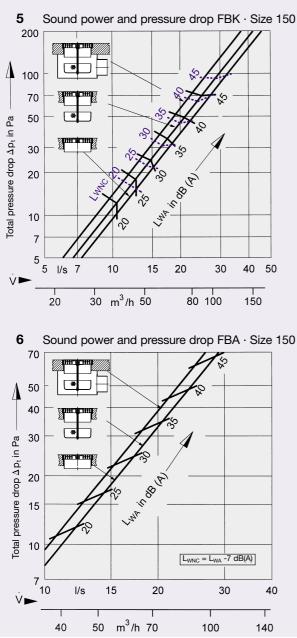
3 Sound power and pressure drop FBA/FBK · Size 200

Sound power and pressure drop

Acoustic Data

Air discharge: Horizontal

Example


Given: Type FBA-H-SM/200 Volume control Volume flow **Required:**

20% open Octave sound power level of regenerated noise L_W

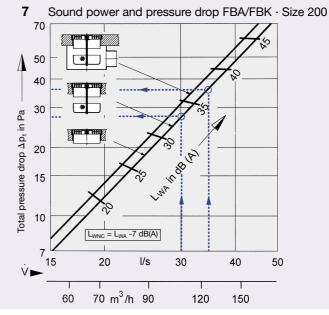
Diagram 7: $L_{WA} = 37 + 7 = 44 \text{ dB(A)}$ $\Delta p_t = 36 \times 1.7 = 61 Pa$

Effective discharge velocity v_{eff}:

Ń 35 $\frac{1}{A_{\text{eff}} \cdot 1000} = \frac{33}{0.0056 \cdot 1000} = 6.3 \text{ m/s}$ Veff $v_{eff} = 6 \text{ m/s}$

Correction to Diagram 5

Volume control using dirt trap


0000	1.5	L _{WA} /L _{WNC}	
open	Δp_t	without AK	with AK
100%	x 1.00	-	-
40%	x 1.20	+ 3	+ 2
20%	x 2.00	+ 5	+ 4

Correction to Diagram 6 Volume control using dirt trap

open	Δp_t	L _{wa} / without AK	L _{W NC}
100%	x 1.00	+ 0	+ 0
40%	x 1.15	+ 1	+ 0
20%	x 1.50	+ 4	+ 4

Correction to Diagram 7 Volume control using dirt trap

0000	4.5	L _{WA} /L _{WNC}	
open	Δp_t	without AK	with AK
100%	x 1.00	+ 0	+ 0
40%	x 1.25	+ 3	+ 2
20%	x 1.70	+ 7	+ 6

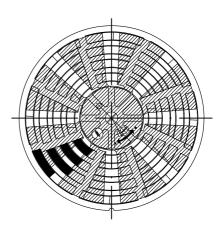
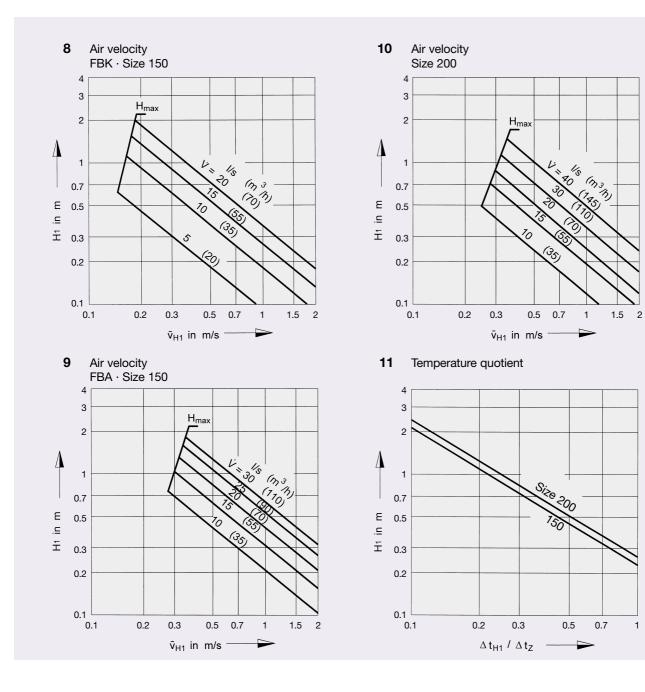

Air discharge: Vertical

Diagram 8, 9 and 10 refer to Δ t_z = –6 K.

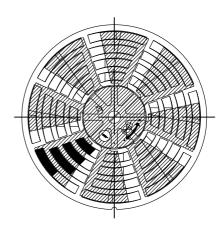
Correction values for other supply air temperature differentials


Δt_{Z} (K)	- 4	- 6	- 8	- 10
H _{max} (m)	x 1.2	x 1.0	x 0.85	x 0.75
Ū _{H1} (m∕s)	x 1.2	x 1,.0	x 0.85	x 0.75

Setting the adjustable swirl element

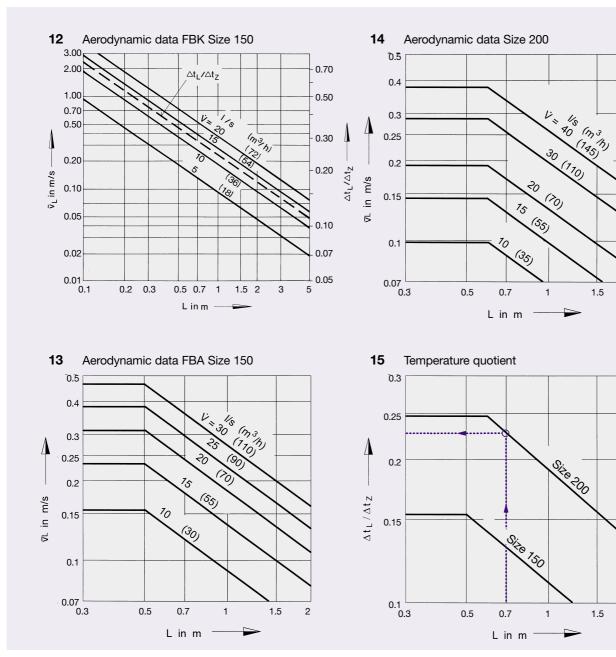
Note:

For construction without the control element the aerodynamic data for the diffuser with vertical discharge only are applicable.

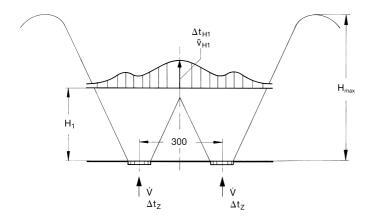

Aerodynamic Data

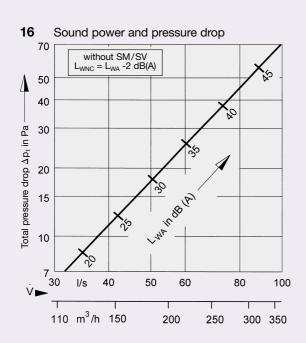
Air discharge: Horizontal

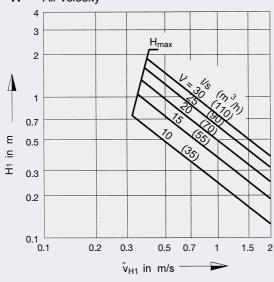
Example


Given:	
Type FBA -2-H-K-SM/200 Volume flow Supply air temperature differential Distance from centre of diffuser	$\dot{V} = 30 \text{ l/s}$ $\Delta t_z = -6 \text{ K}$ L = 0.7 m
Diagram 7: $L_{WA} = 33 \text{ dB(A)}, (L_{WNC} = 26 \text{ NC})$ $\Delta p_t = 27 \text{ Pa}$	
Diagram 14: $\Delta t_L = 0.23 \times (-6 \text{ K}) = -1.4 \text{ K}$ max. air velocity $\bar{v}_L = 0.26 \text{ m/s}$	From diagram 15: aerodynamic data $\Delta t_L/\Delta t_Z = 0.23$

Setting the adjustable swirl element


2

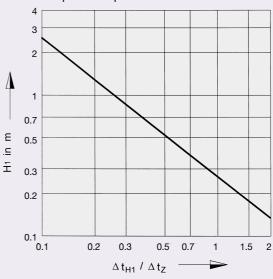

2


Technical Data Size 150 · Multiple Array

Air discharge: Vertical

17 Air velocity

Diagram 17 refers to $\Delta t_z = -6 \text{ K}$.


Correction values for other supply air temperature differentials

Δ t _Z (K)	- 4	- 6	- 8	– 10
H _{max} (m)	x 1.2	x 1.0	x 0.85	x 0.75
⊽ _{H1} (m/s)	x 1.2	x 1.0	x 0.85	x 0.75

Correction to diagram 16

Damper inside entry spigot

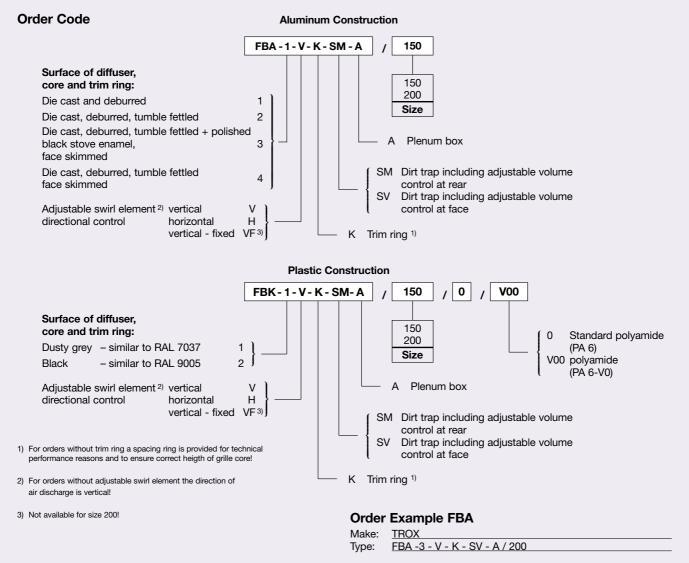
Damper "opening"	Δp_t	L _{WA} /L _{WNC}
90°	x 1.0	+ 0
45°	x 1.6	+ 2
0°	x 4.1	+ 5

18 Temperature quotient

Specification Text

Floor diffuser suitable for installation in false floors. The swirling type discharge ensure acceptability in critical operating conditions. Due to high induction, the core jet velocity and supply temperature differential rapidly reduce. The floor diffuser has a large number of radial ribs to produce a swirling discharge. The adjustable swirl element is turned to alter the direction discharge between vertical and horizontal. Different elements are used for vertical/horizontal (VH) or fixed vertical (VF) discharge. The trim ring is used with fitted carpets, to prevent the edges fraying. Depending on room use and application dirt traps and plenum boxes can be used. For construction with a dirt trap the air volume can be controlled at the face or at the rear of the floor diffuser.

Materials FBA:


Die cast aluminium floor grille and trim ring. There are four different surface treatments (see order code), adjustable swirl element, clamping ring, dirt trap and spacing ring are black polyamide (PA 6-V) to UL Standard '94 (flame retardant). Galvanized sheet steel plenum box and volume control damper. The surface of the plenum box is phosphate treated and stoveenamelled black (RAL 9005). For breaking load see page 9.

Materials FBK:

Polyamide (PA 6 or PA6-V)) floor grille and trim ring to UL Standard '94 (flame retardant) and available in the following colours: dusty grey – similar to RAL 7030; black similar to RAL 9005. Other colours available on request. Black Polyamide (PA 6-V) adjustable swirl element, clamping

ring, spacing ring and dirt trap to UL Standard '94 (flame retardant). For load capacity see Page 9.

Galvanized sheet steel plenum box and volume control damper. The surface of the plenum box is phosphate treated and stoveenamelled black (RAL 9005).

Accessories for type FBA and FBK Size 150:

GAMultiple diffuser plenum box for 4 floor diffusersGAMas GA, but with damper in side entry spigot

oruer	
Make:	TROX
Type:	FBK -1 - V - K - SM - A / 150 / 0 / V00
•••	