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EXECUTIVE SUMMARY 
 
This report describes the results of a study designed to assess the accuracy of the complaint prediction 
model proposed by Federspiel (2000), and to re-calibrate it if necessary. The complaint prediction model 
predicts the average number of hot and/or cold complaints per square foot per year as a function of the 
statistical behavior of the indoor temperature. The significance of the model is that it allows us to 
quantitatively assign economic cost to thermal discomfort in buildings because the operations and 
maintenance labor cost associated with handling thermal complaints can be accurately quantified. 
 
We collected temperature time series data from six buildings ranging in size from 60,000 square feet to 
800,000 square feet. They were located in the Seattle, San Francisco, and Minneapolis areas. In two of the 
buildings we collected temperature time series twice, once during the winter and once during the summer. 
In the other four we collected the temperature time series just once. All six buildings used a computerized 
maintenance management system (CMMS). We determined the number of hot and cold complaints during 
each temperature monitoring interval from the CMMS data. 
 
We found that the original complaint prediction model does not accurately predict complaint rates. It 
under-predicts the number of hot complaints, and the correlation between the number of observed and 
predicted complaints is low and not statistically significant. We re-calibrated the model and improved the 
match between predicted and observed complaint counts. For the re-calibrated model, the correlation 
coefficient between observed and predicted complaint counts is r = 0.49. This degree of correlation, 
though not high, is statistically significant (p<0.05). 
 
There are three primary differences between the original model and the re-calibrated model. The re-
calibrated model predicts that the temperature corresponding to the minimum number of complaints is 
lower than that of the original model. The re-calibrated model also predicts that the minimum number of 
complaints is greater than that of the original model. Finally, the re-calibrated model is not symmetrical. 
The re-calibrated model predicts that hot complaints will increase faster as the average temperature rises 
than will cold complaints as the average temperature decreases. This is a result of the variances associated 
with the cold complaint threshold being larger than the variances associated with the hot complain 
threshold. Larger variances for the cold complaint threshold may be due to the fact that behavioral 
adaptation to hot conditions by reducing clothing and metabolism are strictly limited, whereas the 
opposite adjustments in response to cold are not. 
 
From the coefficients of the model, we can estimate the mean and variance of the temperatures at which 
occupants will complain it is too hot or too cold. In two of the buildings in the study these temperatures 
were sometimes available. We compared the predicted complaint temperature statistics to the hot 
complaint temperature statistics from one building and both the hot and cold complaint temperature 
statistics from the second building. This resulted in six tests of the model. We found that the differences 
between the predicted and computed complaint temperature statistics were not statistically significant in 
all six cases. 
 
In one of the buildings the management independently decided to raise the building temperature by 3 °F 
during the summer of 2001 to save energy. They did this for one month, then reversed the policy because 
of complaints from occupants. We compared the complaint rate before and after the setup period with the 
complaint rate during the setup period. The hot complaint rate during the setup period was 2.36 times 
higher than the hot complaint rate before and after the setup period. This difference was statistically 
significant (p~0). There were not enough cold complaints recorded during these periods to conduct a 
statistical test, but the cold complaint rate during the setup period was lower than before and after. The 
hot complaint rate after the setup period was nearly identical to the hot complaint rate before the setup 
period. The re-calibrated model predicted that the hot complaint rate during the setup period should have 
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been 5.25 times higher than the hot complaint rate before and after the setup period. We asked the Chief 
Engineer at this building about the discrepancy between the two ratios. His response was “I think the 
number of complaints were under-reported as there were so many of them that the guys would ‘lump 
them together’ under one work order (at best) and possibly just didn't record them. It does not surprise me 
if your model would predict the complaint quantity should be higher.” 
 
As benchmarks of model accuracy, we investigated the accuracy of energy prediction models and thermal 
comfort models. We found very little information on the accuracy of energy prediction models. A report 
published by the National Renewable Energy Laboratory (NREL) showed that when different energy 
models are used to predict energy consumption of the same building, the variation among the energy 
models is 10%. The accuracy was slightly worse for cases that involved the influence of indoor 
temperature on energy consumption. The scant information available comparing energy models to real 
energy consumption indicates that uncalibrated predictions may be off by as much as a factor of two 
(coefficient of variation, CoV of 100%) due to a combination of inaccurate input data and poorly 
characterized systems. Calibrated predictions have CoVs from a few percent to as much as 66%. For 
thermal comfort models, the correlation between predicted neutral temperature and outdoor effective 
temperature, described in ASHRAE RP-884, is r = 0.65 or r = 0.55, depending on how neutral 
temperature is calculated. This correlation is now the basis for an adaptive thermal comfort procedure in 
ASHRAE Standard 55. Given the fact that the complaint count data in this study were not recorded by 
researchers as were the thermal comfort surveys in RP-884, the correlation between predicted and 
observed complaint counts seems reasonably good. 
 
We give examples of three ways that the complaint prediction model can be used for design, 
decisionmaking, and control of indoor temperatures in buildings. The model can be used to assess the 
cost-benefit analysis of engineering changes or retrofits designed to reduce complaints and discomfort by 
improving temperature control performance. Using the best control performance observed in this study as 
a benchmark for achievable performance, the complaint prediction model can be used to estimate the 
annual reduction in O&M cost achieved by reducing the variance of temperature controls. Variance could 
be reduced by replacing old controllers with newer technology or by tuning existing controllers. 
 
We show how the complaint prediction model can be used to optimize indoor temperature settings. If the 
goal is to minimize the frequency of complaints, then the complaint prediction model can be used to 
determine the optimal average temperature that will achieve that goal. This temperature is called the 
minimum discomfort temperature (MDT). The model can also be used to determine the indoor 
temperature that will minimize the sum of energy cost and O&M cost of handling complaints. This 
temperature is called the minimum cost temperature (MCT). 
 
Finally we show how MDT and MCT can be used as the basis of an economic criterion for thermal 
comfort standards. In the summer, operating a building at an average temperature greater than MCT or 
less than MDT is neither economical nor as comfortable as possible. Temperatures between MCT and 
MDT are a tradeoff between economics and comfort. We propose that MCT and MDT be used as the 
basis of upper and lower temperature limits for ASHRAE Standard 55. One advantage of this approach is 
that it eliminates the need to make arbitrary assessments of what constitutes “acceptable”. Current 
comfort standards are based on the assumption that a thermal sensation vote with a magnitude greater 
than 1 on a seven point scale from –3 to 3 is unacceptable. Another advantage of this method is that the 
upper and lower temperature bounds will be elastic functions of energy consumption and cost. Currently, 
thermal comfort standards specify a fixed level of comfort regardless of the energy required to deliver that 
comfort or the cost of energy. Since most energy codes and standards require an energy analysis, a 
standard based on MCT and MDT would not require significantly more engineering effort.  
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The important results of this study can be summarized as follows: 
 

1. The re-calibrated model predicts lower MDT than the original model. 
2. The re-calibrated model predicts higher minimum complaint rates than the original model. 
3. The re-calibrated model is more asymmetrical than the original model. The hot complaint rate 

increases faster with increasing temperature than the cold complaint rate increases with 
decreasing temperature. 

4. The accuracy of the model is comparable to the accuracy of uncalibrated energy models and field 
measurements of neutral temperature. 

5. The model can be used to perform cost-benefit analyses of retrofits and engineering efforts that 
would improve temperature control performance. 

6. The model can be used to select optimal temperature at which to operate buildings. 
7. The model can be used as the basis of an economic criterion for thermal comfort standards. Doing 

so eliminates the need to make arbitrary assessments of what constitutes “acceptable”, and allows 
the thermal comfort standard to be elastic with respect to the amount and cost of energy required 
to provide comfort. 

1 INTRODUCTION 
When building occupants become sufficiently hot or cold and have exhausted all ways of coping with 
their discomfort, they often complain to the facility manager. These complaint events are called 
unsolicited complaints because they are not solicited by the facility management as are complaints 
obtained through surveys.  
 
This project was motivated by the fact that there is a substantial need for research relating the 
performance of HVAC systems to operating costs other than energy cost. In particular, we are interested 
in being able to quantify the value of comfort in commercial buildings, or conversely, the cost of 
discomfort. Much of the effort of relating HVAC system performance to non-energy operating cost has 
focused on the effect that HVAC systems have on human health and productivity. Research results 
relating HVAC system behavior to human health have been reported by Jaakola et al. (1991), Hodgson et 
al. (1991), and Wyon (1992). Wyon (1993, 1996) and Sensharma and Woods (1997) review and discuss 
the effects of the indoor environment on productivity. Fisk (2000) estimated the economic benefits that 
would likely occur from improvements in indoor environments, including improvements in thermal 
comfort. The uncertainty of these estimates is large, but the magnitude is also large. Federspiel et al. 
(2002) studied the impact of ventilation and a number other factors including temperature have on the 
work performance of call center agents. They found that when the temperature was greater than 77.7 °F, 
agents performed one of the their tasks 16% slower. Since health and productivity costs are large 
compared to energy costs in buildings, significant findings from health and productivity research should 
lead to significant changes in the design and operation of HVAC systems. A limitation of health and 
productivity research to date is that it is case-based. This makes it difficult to extend the findings of a 
study to conditions not considered in the study. 
 
This study focused on quantitatively predicting the direct impact of HVAC system performance on 
maintenance cost. Unsolicited complaints contribute to the operation and maintenance (O&M) cost of 
buildings because they lead to a kind of unscheduled maintenance service request. In the most common 
scenario a technician is dispatched to the site to investigate the cause of the complaint and resolve the 
problem. In this scenario the cost of the complaint is at least equal to the cost of the technician’s labor. 
This study also focused indirectly on the impact of HVAC system performance and energy cost because 
factors that affect complaint cost also affect energy cost. Complaint behavior is affected by controlled 
environmental variables such as temperature. Indoor temperature also affects energy cost. If the 
relationship between indoor temperature and complaint rate could be predicted with reasonable accuracy, 
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then decisions about building operations could be optimized so that the sum of maintenance and energy 
costs are minimized.  
 
There have been decades of research on predicting thermal comfort. The early efforts in this area were 
purely empirical. Houghten and Yaglou (1923) developed the first effective temperature index using 
empirical methods. Nevins et al. (1966) and McNall et al. (1967) describe examples of empirical 
predictions of thermal sensation ratings. Most recent work on thermal comfort has been at least partly 
based on heat and mass transfer models. Fanger (1972) describes a model-based, semi-empirical method 
of predicting thermal sensation ratings and for predicting the fraction of dissatisfied occupants. These 
indices are called Predicted Mean Vote (PMV) and Predicted Percent Dissatisfied (PPD), respectively. 
PMV predicts the average subjective thermal sensation rating of a large group based on six variables that 
affect the human heat balance, and PPD predicts the expected fraction of a large group with a subjective 
assessment of hot or cold above an absolute PMV level of 1.5 scale units. Extensions of the model-based 
approach to predicting thermal sensation have been developed by others. Gagge et al. (1986) describe the 
2-node model that is the basis of ET*. A 64-node comfort model that captures details of human 
physiology such as blood counterflow and differing temperatures in 16 body segments was recently 
developed by Huizenga et al. (1999). 
 
Complaint behavior in buildings has been studied much less than other processes that affect the operating 
cost of buildings such as energy usage, equipment reliability, and scheduled or predictive maintenance. 
This is in spite of the fact that hot and cold complaints have been shown to be the most common kind of 
maintenance service call (Federspiel, 1998), and a significant fraction (5.3 cents per square foot) of the 
cost of maintenance. Complaint behavior has also been studied much less than thermal comfort. 
Complaints are related to but not the same as thermal comfort. Therefore, a complaint model should be 
similar to but not the same as a comfort model. One difference lies in the fact that complaints are discrete 
events while discomfort is a state of being. This means that a complaint model should predict the 
frequency of occurrence, while a discomfort model should predict the degree of discomfort. 
 
Unlike the relationships between HVAC system performance and health and productivity costs, the 
relationship between HVAC system performance and complaint cost can be predicted. Federspiel (2000) 
recently proposed a model that predicts thermal complaint rate based on three statistics of the space 
temperature in buildings. These statistics are mean space temperature, standard deviation of the space 
temperature, and standard deviation of the rate of change of the space temperature. The model treats 
complaints as a kind of alarm. The theory of stochastic processes that deals with a random processes 
crossing a level (Cramer and Leadbetter, 1967) was used to formulate the model. In the model, there are 
two levels, one representing tolerance for high temperatures and the other representing tolerance for low 
temperatures. When the space temperature crosses the high-temperature tolerance level, the occupants 
complain that it is too hot, and when the space temperature crosses below the low-temperature tolerance 
level, the occupants complain that it is too cold. A key difference between the levels of the complaint 
model and the levels of a standard control alarm is that the levels of the complaint model are random 
processes, while the levels of a control alarm are fixed and known. Modeling the levels as random 
processes accounts for the fact that occupants do not always complain at the same temperature every time. 
Since the levels are random processes and cannot be measured directly except at the instant that someone 
complains, the time in the future when someone will complain cannot be predicted. However, it is 
possible to predict the mean complaint rate, which is what affects the operating cost of a building. 
 
The parameters of Federspiel’s original model were determined using data acquired from a set of 
buildings at a single geographical location. The accuracy of the model has not yet been tested because the 
data required to assess the accuracy has not been acquired. The objective of this project was to evaluate 
the accuracy of the complaint model proposed by Federspiel (2000), and to improve it if necessary and 
possible so that it can be used for analysis purposes, economic decisions about the operation of buildings, 
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or incorporated into standards such as ASHRAE Standard 55. The project involved collecting temperature 
time series and complaint data from buildings, analyzing the data, assessing the accuracy of the original 
model, re-calibrating the model, assessing the accuracy of the re-calibrated model, and demonstrating the 
model’s practical use. 
 
The next section contains a summary of the complaint prediction model (Federspiel, 2000). Section 3 
describes the research methods used for this study. Section 4 contains the results, and Section 5 contains a 
discussion of those results and their applicability to design, operations, and thermal comfort standards. 

2 COMPLAINT PREDICTION MODEL 
Federspiel (2000) proposed a complaint prediction model in which unsolicited thermal sensation 
complaint are modeled as stochastic temperature alarms. By stochastic, we mean that the complaint levels 
are random processes. Unsolicited thermal sensation complaints are discrete events. Unlike a control 
alarm, the temperature level at which a complaint occurs is not fixed. It is also not clearly related to any 
other variable. It is for these two reasons that complaint levels are modeled as random processes. 
 
Figure 1 shows a graphical representation of the complaint model. The graph on the left side of the figure 
shows three time series. One is the high-temperature (hot complaint) level, one is the low-temperature 
(cold complaint) level, and the one that is mostly between these two levels is the building space 
temperature. All three of these are modeled as random processes. Complaints are modeled as the events 
corresponding to the building space temperature crossing one of the levels. For example, a hot complaint 
occurs when the building space temperature crosses above the high-temperature level. Figure 1 shows two 
hot complaints and two cold complaints. The complaint levels in the model are not physical processes that 
can be monitored continuously as the building temperature can be monitored. Instead they are abstract 
processes designed to model the variable tolerance for temperature that we observe in practice. When 
complaints occur, the value of these levels can be measured because at those instants the building space 
temperature and the complaint level are equal by definition. It is by measuring the complaint temperatures 
along with the building space temperatures that we can estimate the statistical properties of the complaint 
levels. 
 
If the process on the left-hand side of Figure 1 is observed for a long time, and if the temperatures at 
which the crossings occur are recorded, the complaint temperatures will form two distributions as shown 
in the graph on the right-hand side of Figure 1. Figure 2 shows actual complaint temperatures. The figure 
shows two distinct distributions. Spikes are attributed to the rounding to the nearest marking on the 
thermometer from which the temperatures were read.  
 
To make analytical predictions, we assume that the three temperature distributions in Figure 1 are 
stationary (time-invariant statistics) and Gaussian. The standard level-crossing process is one in which a 
stationary Gaussian process crosses a fixed level. The mathematical theory for predicting the mean 
frequency of the standard level-crossing process was first developed by Rice (1945). Cramer and 
Leadbetter (1967) developed additional mathematical properties of the level-crossing problem as well as 
extensions of the theory to non-stationary processes. The mean frequency that a stationary Gaussian 
processes crosses a fixed level L  is determined from the following simple formula: 
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Figure 1: Thermal sensation complaint process model. 

 

Figure 2: Temperatures at which occupants complained (Federspiel, 1998). 
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where x  refers to the random process, x� is the mean crossing frequency, x��  is the standard deviation of 
the rate of change of x , x�  is the standard deviation of x , and x�  is the mean value of x . The standard 
deviation of the rate of change is important because if x  can change rapidly then it can cross L  more 

frequently. The value of 
x

x

�
�

�

 is the nominal time constant of the process, and 
x

x

�

�
�  is the bandwidth. If the 

process is oscillatory, then 
x

x

�

�
�  will be the natural frequency. For a given value of x� , as x��  increases, 

the natural frequency increases, and therefore the average rate at which x  crosses L  increases. 
 
There are two differences between the standard level-crossing process and the complaint process. The 
first is that the levels of the complaint process are not fixed, and the second is that buildings are not 
always continuously occupied. The fact that building are not continuously occupied implies that there will 
be arrival complaints that occur in the morning when occupants arrive and the temperature is either higher 
than the hot complaint level or lower than the cold complaint level. For arrival complaints, the “crossing” 
occurs prior to arrival and the complaint condition still exists when occupants arrive. The first difference 
is handled by a change of variables, and the second difference is handled by computing the probability of 
an arrival complaint. 
 
The complaint prediction model has more notation than the standard level-crossing process because it 
involves the interaction of three processes. The notation is described here. The high-temperature level at 
which a hot complaint occurs will be referred to as TH , the building temperature will be referred to as 
TB , and the low-temperature level at which a cold complaint occurs will be referred to as TL . The 
parameters � TH

, � TH
, and � �TH

 are the mean, standard deviation and standard deviation of the rate of 

change of TH . The parameters � TB
, � TB

, and � �TB
 are the mean, standard deviation and standard 

deviation of the rate of change of TB . The parameters � TL
, � TL

, and � �TL
 are the mean, standard 

deviation and standard deviation of the rate of change of TL . 
 
Mathematically, the expected number of complaints per zone per day is as follows 
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and where t  is the length of time each day that the building is occupied. The quantities Ph  and Pl  are the 
probabilities of hot and cold arrival complaint conditions, respectively. To estimate the complaint rate for 
a whole building it is necessary to determine the number of zones. The number of zones is the plan area 
of the building divided by the nominal area of a zone. The nominal area of a zone is the seventh 
parameter of the complaint prediction model. It is not necessarily the same as the size of individual 
HVAC zones. The temperature in individual HVAC zones may be correlated for a number of reasons 
such as being side-by-side, being exposed to the same exterior convective and solar disturbances, and 
being served by the same primary equipment. The correlation will make the nominal area of a complaint 
zone greater than the size of individual HVAC zones. 
 
The correlation coefficients in Equations 6-9 are included for mathematical completeness. In all 
subsequent sections we assume that the correlation coefficients are zero, meaning that the tolerance for 
indoor temperature is independent of the indoor temperature itself. 
 
The predicted complaint rate depends on the rate of change of the complaint levels in addition to the rate 
of change of the temperature itself. The importance of the rate of change of the complaint levels is similar 
to the importance of the rate of change of the building space temperature, though the physical causes of 
variations in the complaint levels are not generally the same as the causes of variations in building space 
temperature. Variations in the complaint levels may be caused by changes in activity, posture, clothing, 
attention to work, health, etc. 
 
The original complaint prediction model was calibrated using data from a complaint database. Building 
space temperature time series were not available for estimating the values of 

BT� , 
BT� , and 

BT�� . 

Instead, the value of � TB
 was computed from the complaint temperatures in the complaint database that 

were associated with humidity and air motion complaints. We assumed that the mean value of the 
complaint temperatures for humidity and air motion complaints was the same as the mean building 
temperature. The value of � �TB

 was computed from the complaint and resultant temperatures (temperature 

recorded shortly after the problem was resolved) for humidity and air motion complaints and the 
difference between the complaint time and the resolution time. Only the complaints for which either no 
action was taken or no action could be taken by the time that the complaint was resolved were used so 
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that the temperature changes represented “normal” variations in building space temperature. The value of 
� TB

 was estimated by numerically determining the value that makes the estimated ratio of the complaints 
logged in the morning (prior to 10AM) to the total number per day equal to the measured ratio. The 
nominal area per zone was computed by searching the database for the number of unique complaint 
locations and dividing the total plan area of the facility by this count. 

3 METHODS 
In this section we describe methods used to identify buildings, collect data, analyze data, and protect the 
confidentiality of human subjects data. 

3.1 Human Subjects Protocol 
This project involved the collection of human subjects data because complaint logs contain “identifiable, 
private information” about building occupants such as their name, work location, and work phone 
number. Appendix A includes the human subjects protocol that was approved by the Committee for the 
Protection of Human Subjects at UC Berkeley. Among other things, this protocol requires that we not 
identify the buildings or organizations involved in this study by name. Consequently we refer to them as 
Buildings A – F. 

3.2 Identification of Buildings 
We contacted three organizations that manage a large number of non-residential, non-industrial buildings 
and that use modern computerized maintenance management systems (CMMS) containing records of hot 
and cold complaints. One of these organizations had a set of 143 buildings from which to choose. A 
second organization had a set of 107 buildings from which to choose. The third organization had a set of 
six buildings from which to choose. Ultimately, the second organization with the 107 buildings was 
unable to participate in the study. From the two remaining organizations, we selected eight buildings for 
the study that included two with pneumatic controls, a large range of sizes, and (based on a pre-analysis 
of the CMMS data) a wide range of complaint rates. We found that the control system infrastructure was 
inadequate in two of these buildings, so they were dropped from the study. We later found that hot/cold 
complaint data were no longer recorded in another one of the original eight buildings, so we dropped that 
building from the study. These two organizations use the same CMMS system. 
 
A fourth organization approached us with an interest in participating. We included one building from that 
organization because they sometimes recorded complaint temperatures when responding to temperature 
complaints. Most maintenance organizations do not record the building space temperature in the 
maintenance database.  
 
Table 1 shows characteristics of the six buildings in the study. 
 

Table 1: Building characteristics 

Building Label A B C D E F 
Organization 
Number 

1 2 1 2 3 1 

Area, 100K ft2 0.6 1.08 2.84 5.42 6.33 7.98 
Location Seattle SF Bay Area Seattle SF Bay Area Minneapolis Seattle 
Type Lab/Office Office Office Office Bank/Office Office 
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3.3 Data Collection 
We collected temperature time series data and CMMS data. The CMMS data contained records of hot and 
cold complaints.  

3.3.1 Temperatures 
We collected temperature time series data with a between-sample interval of 5 minutes for all buildings. 
For each building, we collected temperature data for intervals of at least three weeks. For Buildings E and 
F, we collected temperature time series twice, once during the winter and once during the summer. All 
temperature time series were recorded during 2001. In Buildings A, C, D, and F, we used the existing 
direct digital control (DDC) system to record temperatures. In Buildings B and E we used micro-
dataloggers to record temperatures. Table 2 shows the temperature data collection parameters.  
 

Table 2: Characteristics of temperature time series. 

Building 
Label 

A B C D E F 

Source DDC Logger DDC DDC Logger DDC 
Init. points 52 50 39 172 169/110 272/272 
Final points 51 49 39 136 152/88 187/187 
Interval 1 Jan 10 – 

Apr 19 
Jan 8 – 
Feb 4 

Feb 23 – 
May 16 

Feb 2 – 
Mar 21 

Jan 21 – 
Feb 16 

Mar 26 – 
May 12 

Interval 2 - - - - Aug 23 – 
Sep 25 

Aug 1 – 
Aug 24 

 

3.3.2 Complaint data 
Organization 1 operates a centralized CMMS call center that occupants of Buildings A, C, and F used to 
report service requests, which include hot and cold complaints. The call center agents create a work order 
in the CMMS system, enter data in the DESCRIPTION field in the database, and contact the appropriate 
maintenance personnel about the service request. The maintenance personnel complete the ACTION field 
in the database before closing the work order. One field in the CMMS data from Organization 1 contained 
a label called HOT/COLD. Starting in January 2001, they separated HOT from COLD to make our work 
easier. 
 
Occupants of Buildings B, D, and E called the local maintenance department to report hot and cold 
complaints. The maintenance personnel created a new work order, inserted the DESCRIPTION data, 
performed the required work, inserted the ACTION data in the database, and then closed the work order. 
 
Complaint data were supplied to us as spreadsheet tables exported from CMMS databases or converted to 
another database format that was easier for us to use. We performed a semi-automated search of the 
CMMS data from each building for hot and cold complaint records, running queries on the 
DESCRIPTION and ACTION fields for “hot”, “warm”, “boiling”, “cold”, “cool”, and “freezing”. For 
buildings from Organization 1, we did not rely exclusively on the HOT and COLD labels.  
 
For some of the buildings, the number of hot and/or cold complaints during the temperature monitoring 
intervals shown in Table 2 was low. In these cases we extrapolated beyond the temperature monitoring 
interval in both directions equally until we either observed at least five complaints of each type or until 
the extended interval was equal to twice the temperature monitoring interval. Table 3 shows the intervals 
used for counting complaints. The complaint counting intervals for Buildings A, B, D, E, and Interval 2 
of Building F were extended in this way. 
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Table 3: Complaint counting intervals for each building. 

Building A B C D E F 
Interval 1 Dec 18 – 

May 2  
Dec 25 – 
Feb 18  

Feb 23 – 
May 16 

Jan 9 – Apr 
14 

Jan 17 – 
Feb 20 

Mar 26 – 
May 12 

Interval 2 - - - - Aug 12 – 
Oct 7 

Jul 27 – 
Aug 29 

 
During January 2001, rolling blackouts were occurring in California. These conditions probably caused 
the number of complaints in the two California buildings to be lower than normal because well-
documented energy conservation efforts were in place, and occupants were likely to comply with them 
because of the severity of the energy crisis. The energy conservation measures involved increasing the 
thermostat deadbands, among other things. In Building A, there was just one complaint recorded during 
the extended interval, whereas there were an average of 12.5 complaints recorded during this same 
interval in previous years. We used the average of the two previous years for the Building A count. We 
did not rely on previous years for Building D because it is a relatively new building, so significant 
changes in operations could have occurred since the previous year. 

3.4 Analysis 

3.4.1 Calibration 
When DDC systems were used to collect temperature data, we performed a single-point calibration of the 
thermostat. When micro-dataloggers were used to record temperatures, we used a two-point calibration 
procedure: once in an ice bath and once at room temperature. Dataloggers that were found to be out of 
calibration were not re-calibrated. Instead they were not used. 

3.4.2 Descriptive Statistics 
For each time series we computed the minimum, mean, median, maximum, standard deviation, and 
standard deviation of the rate of change for every time series in the study. For time series from DDC trend 
logs, we also computed the calibration error. We used the calibration error to correct the mean  
 
We computed the standard deviation of the rate of change using the following equation: 
 

N
T

T
T

��

� ��       (10) 

 
where T  is the interval over which temperature measurements were recorded, and N  is the number of 
crossings of the mean level. We used the sample standard deviation in Equation 10. This method assumes 
that the temperature time series are normally distributed but correlated. 
 

3.4.3 Time Constant 
Thermostats are known to have a long time constant relative to the external temperature probes used in 
Buildings B and E. We tested the impact of thermostat time constant by attaching 17 micro-dataloggers to 
17 thermostats in Building D as shown in Figure 3.  
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Figure 3: Example of logger and thermostat pairs used to evaluate time constant. 

 
We computed the standard deviation and standard deviation of the rate of change for the readings from 
the thermostats and the reading from the dataloggers using the method described in Section 3.4.2. The 
results of this analysis are described in Section 4.1. 
 
Based on the results of Section 4.1, we adjusted the standard deviation of the rate of change measured by 
thermostats using the following procedure. We computed the time constant using the following equation: 
 

T

T

��

�

� �       (11) 

 
We subtracted 0.4 hours (24 minutes) from this value to eliminate the effect of the thermostat. Differences 
less than 24 minutes were set equal to 24 minutes. Then we re-computed the standard deviation of the rate 
of change. Mathematically, we did this: 
 

� �4.0,4.0max,
�

�

�

�

�
T

adjT�      (12) 

 

3.4.4 Parameter Estimation 
We adjusted the coefficients of the original model using a cost function that penalized differences 
between the observed data in this study and the predicted observations, and deviations of the coefficients 
from those of the original model. The penalty function we used is as follows: 
 

� �� � pdc VVVV ��� ���� 1      (13) 
 
where  
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� �� poc NNV      (14) 

� � � �� ���� pcphocohd NNNNV ,,,,      (15) 

�
�

�

i i

inio
p S

PP
V ,,      (16) 

 
and where oN  is the observed number of hot or cold complaints, pN  is the predicted number of hot or 

cold complaints, ocoh NN ,, �  is the observed difference between the number of hot and cold complaints, 

pcph NN ,, �  is the predicted difference between the number of hot and cold complaints, oP  are the 

values of the original parameters of the model, nP  are the values of the new parameters, and S  is the 
parameter used to scale the differences between original and new parameters. The value of �  was chosen 
so that when the coefficient of the model equal the values of the original model, then � �dc VV ��� . We 
used the largest value of �  that resulted in a statistically significant model. Table 4 shows the values 
used for parameter estimation.  
 

Table 4: Values of coefficients used for parameter estimation. 

i 1 2 3 4 5 6 7 
Label A 

LT�  
LT�  

LT��  
HT�  

HT�  
HT��  

oP  2209 54.5 4.39 3.69 91.0 4.24 0.84 

S  2209 4.39 4.39 3.69 4.24 4.24 3.69 
 

4 RESULTS 
 

4.1 Time Constant 
Using the analysis method described in Section 3.4.1, we found that the standard deviations of the 
thermostat temperatures were indistinguishable from the standard deviations of the logger temperatures. 
Figure 4 shows the standard deviations of the 17 thermostat time series plotted against the standard 
deviations of the 17 micro-datalogger time series.  
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Figure 4: Standard deviation of temperature: thermostat vs logger 

 
We found that the standard deviation of the rate of change of the thermostat readings was lower than the 
standard deviation of the rate of change of the micro-datalogger readings. The standard deviation divided 
by the standard deviation of the rate of change is the “time-constant” of the system. We found that the 
average difference between the time constant of the thermostat and the time constant of the micro-
datalogger was 20.5 minutes. This compares favorably with the time constant specified by the 
manufacturer of this thermostat (JCI, 2000) and the datalogger (Onset, 2002). The thermostat is a “first-
generation” device, meaning that it is the first version of this thermostat sold by this manufacturer. The 
second-generation device has a time constant of 8 minutes, which is 70% of the time constant of the first 
generation device, so the time constant of the first-generation thermostat is 26.7 minutes. According to 
Drees (2002), this is typical of most thermostats on the market. The time constant of the logger with an 
external probe is rated by the manufacturer as less than 3 minutes in air.  
 
We used this finding to adjust the standard deviation of the rate of change of temperature so that all 
readings are associated with the response of a datalogger with an external probe. We assumed that the 
actual difference between the thermostat and the logger was 24 minutes. This was accomplished using the 
method described in Section 3.4.1.  
 
The table of results from this time response experiment are shown in Appendix B. 
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4.2 Accuracy of Original Model 
We computed the minimum, mean, median, maximum, standard deviation, and standard deviation of the 
rate of change for every time series in the study. For time series from DDC trend logs, we also computed 
the calibration error, and subtracted it from the minimum, mean, median, and maximum. These statistics 
and the corrected standard deviation of the rate of change are shown in Appendix C. The values of the 
minimum, mean, median, and maximum in Appendix C are uncorrected (i.e., not adjusted by the 
calibration error). 
 
After computing these statistics, we computed the estimated number of complaints of each kind for each 
building and compared them with the observed number of hot and cold complaints from each building. 
Table 5 shows the number of observed hot and cold complaints for each building during each interval. E1 
and F1 correspond to Interval 1 in Table 3. E2 and F2 correspond to Interval 2 in Table 3. Figure 5 shows 
the number of hot and cold complaints from each building plotted versus the number predicted by the 
original model. The size and color corresponds to the kind of complaint (hot is large/red, cold is 
small/blue).  
 

Table 5: Observed hot and cold complaint counts. 

Building A B C D E1 E2 F1 F2 
Cold 6  25 16 6 5 2 18 5 
Hot 6 0 25 13 10 9 10 8 

 
 
The two small/blue points on the right-hand side are from Buildings B and D. These data points may have 
been affected by the blackouts that were occurring in California in late 2000 and early 2001. Operations 
personnel made changes intended to reduce energy consumption and they posted notices about their 
actions that were designed to elicit cooperation (i.e., reduce complaints) from occupants. These data 
points may also be affected by the fact that Organization 2 uses a “catch-all” labor category in their 
CMMS system for short jobs that are not considered important enough to warrant a work order of their 
own. Hot or cold complaints handled this way would be lost from the count. The Chief Engineers in 
Buildings B and D told their employees not to use the catch-all category for hot or cold complaints, but 
they said that it still may have happened some of the time. It seems even more likely considering that 
another building from Organization 2 had to be dropped from the study because all of the hot and cold 
complaints in that building during 2001 were fielded using the catch-all labor category. We flagged these 
two points as outliers and removed them from further analyses. 
 
The red point in the upper left corner of Figure 5 is from Building C. Building C is a converted industrial 
building with a combination of pneumatic and digital controls. The point density in this building is low, 
which makes it more likely that hot spots were missed by incomplete sampling of the temperature 
distribution in this building. Consequently, we flagged this point as an outlier and removed it from further 
analyses. 
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Figure 5: Predicted versus actual complaint counts of original model.  

 
Figure 6 shows the actual versus predicted complaint counts with the three outliers removed. The figure 
shows that the correlation between the predicted and actual counts is low (r = 0.19) and not statistically 
significant (p = 0.27), and that the model is under-predicting the number of hot complaints. 
 

Figure 6: Predicted versus actual counts of original model with outliers removed.  

 
Figure 7 shows the actual relative complaint rate (number of hot complaints minus the number of cold 
complaints divided by the total) versus the predicted relative complaint rate. The relative complaint rate is 
a measure of hot versus cold. Negative values correspond to persistently cold conditions, while positive 
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values correspond to persistently hot conditions. One of each of the two points corresponding to 
Buildings B, C, and D were flagged as outliers earlier. The graph shows that the observations covered a 
wide range on this scale, from –1 for Building B to 0.63 for Building E. The graph shows that the original 
model is under-predicting the number of hot complaints relative to the number of cold complaints. The 
largest differences are Buildings C and D, which were flagged as outliers in Figure 5. The other outlier 
building is B. The low cold complaint count doesn’t significantly affect the ratio plotted in Figure 7 
because zero hot complaints were observed. The relative loss of data would be small. 
 

Figure 7: Predicted versus actual relative complaint rate for original model. 

4.3 Parameter Estimation 
Using the method described in Section 3.4.2, we re-calibrated the original model to improve the fit to the 
observed data. Figure 8 shows the predicted versus actual complaint counts, with the two outliers 
removed (analogous to Figure 6). The correlation is not high (r = 0.49), but it is statistically significant 
(p<0.05). The coefficient of variation (CoV; standard deviation of prediction error divided by the mean of 
the actual counts) is 57%. 
 
Figure 9 shows the predicted versus actual relative complaint rate for the re-calibrated model. The 
agreement is significantly better than the original model. The correlation coefficient between the five 
points not flagged as outliers and Building B is r = 0.94. 
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Figure 8: Predicted versus actual counts for re-calibrated model. 

 

Figure 9: Predicted versus actual relative complaint rate for re-calibrated model. 

 
Table 6 shows the parameters of the original model and the parameters of the recalibrated model. All four 
standard deviations increased. The standard deviations associated with the cold complaint level are both 
greater than the standard deviations associated with the hot complaint level. This may be related to the 
fact that there is a hard limit to how much clothing insulation can be reduced to deal with hot stress, but 
no hard limit to how much it can be increased to deal with cold stress, and likewise for metabolism. 
 

Table 6: Parameters of original and re-calibrated model. 
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Parameter A, 
ft2/zone LT� , 

°F 
LT� , 

°F 
LT�� , 

°F/hr 
HT� , 

°F 
HT� , 

°F 
HT�� , 

°F/hr 
Original 2209 54.5 4.39 3.69 91.0 4.24 0.84 
Re-cal 4657 50.43 6.14 4.08 91.0 5.06 1.14 

 
Figure 10 shows how the complaint rate predicted by the original model and the re-calibrated model when 
the standard deviation of the temperature is 0.98 °F and the standard deviation of the rate of change is 
0.90 °F/hour. These were the average values for the time series from the first temperature monitoring 
interval in Building F. The figure shows that the recalibrated model predicts that the mean temperature 
that will minimize complaints is lower than that of the original model (73.1 °F versus 73.6 °F) and that 
the minimum number of complaints is greater than the original model. 
 

Figure 10: Comparison of original and re-calibrated model. 

4.4 Model Validation 

4.4.1 Complaint Temperatures 
In Building E, the maintenance personnel would sometimes record complaint temperatures by either by 
reading the digital thermostat or by reading a temperature from a handheld meter once on site, or both. In 
Building F the maintenance personnel agreed to record complaint temperatures during the first 
temperature monitoring interval. We compared the mean and variance of the complaint temperatures 
predicted by the re-calibrated model with the sample mean and variance from each building. All 
complaint temperatures and relevant statistics can be found in Appendix D. Means were compared using a 
single-sample t-test. Variances were compared using a chi-squared test. All six predicted statistics fall 
within the confidence intervals. 

4.4.2 Effect of Temperature Setup 
In Building E, the facility management has a standard setpoint policy of 74 F. The management decided 
to raise this standard setpoint during the summer of 2001 to 77 F for energy conservation reasons. The 
controls have a deadband of 0.5 F above the setpoint, and 1.5 F below the setpoint, meaning that cooling 
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was not enabled until the temperature was above 74.5 F or 77.5 F, and heating was not enabled until the 
temperature was below 72.5 F or 75.5 F. During the setup period, heating was turned off. The energy-
saving policy was in effect for one month. After that the policy was reversed because of complaints from 
some occupants. According to the Chief Engineer, trend logs indicated an average building temperature of 
76.4 F during the set-up period. We found that the average calibration error for Building E during the 
summer of 2001 was -0.49 F, indicating that the average temperature was probably 75.9 F.  
 
Table 7 shows the number of complaints recorded in the maintenance database for the month prior to 
increasing the setpoint, the month that the setpoint was raised, and the month following the reversal of the 
setup policy. The table reveals that there were more hot complaints during the period when the setpoint 
was 77 than the months before or after. We used a statistical test described in Fleiss (1981) to determine if 
the difference was statistically significant. The test statistic for the hot complaints was 12.3. The critical 
value for � = 0.05 was 1.645, which implies that the increase in the number of hot complaints during the 
month when the setpoint was raised was statistically significant. 
 

Table 7: Complaints before, during, and after setpoint change. 

duration hot cold total 
4/19/01 through 5/16/01 (setpoint = 74) 12 2 14 
5/17/01 through 6/14/01 (setpoint = 77) 26 3 29 
6/15/01 through 7/12/01 (setpoint = 74) 10 5 15 

 
The results provide strong evidence that increasing the temperature increased the hot complaint rate. The 
number of hot complaints increased by a factor of 2.36. If we assume that the variance of the temperature 
and the variance of the rate of change during the interval from April 19 through July 12 were the same as 
during the interval from Aug 23 – Sep 25, then the model predicts that the number of hot complaints 
should have increased by a factor of 5.25, which is almost twice the observed increase. We asked the 
Chief Engineer about the discrepancy between the two ratios. His response was “I think the number of 
complaints were under-reported as there were so many of them that the guys would ‘lump them together’ 
under one work order (at best) and possibly just didn't record them. It does not surprise me if your model 
would predict the complaint quantity should be higher.” 

5 DISCUSSION 

5.1 Practical Evaluation of Accuracy 

5.1.1 Accuracy of Energy Models 
We reviewed the existing literature on the accuracy of energy models because energy models are likely to 
be used on conjunction with the complaint model. Neymark and Judkoff (2002) describe the results of the 
International Energy Agency’s efforts on benchmarking the performance of energy models. Their results 
show that the coefficient of variation (CoV) of the differences between seven models are approximately 
10%.  
 
Errors in predicting actual energy use can be large. Norford et al. (1994) found that uncalibrated energy 
predictions and actual energy consumption could differ by a factor of two. This would correspond to a 
coefficient of variation (standard deviation of prediction error divided by mean of actual value) of 100%. 
These errors are due to a combination of inaccurate input data and poorly characterized systems.  
 
The accuracy of calibrated energy models have been assessed in two “Energy Predictor Shootouts”. The 
first shootout, summarized by Kreider and Haberl (1994), involved empirical predictions of hourly energy 
consumption. Contestants were given a training set and were required to predict hourly consumption of 
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electricity, hot water, and chilled water during a test period. No description of the building or other 
specific details about the data were provided. 21 contestants submitted predictions. The CoV of the 
predictions (mean squared prediction error divided by the mean of the variable being predicted) submitted 
by the contestants ranged from 3% to 66% depending on the variable, data set, and contestant. The 
average CoV ranged from 10% for the best contestant to 30% for the worst. 
 
In the second shootout, summarized by Haberl and Thamilseran (1998), contestants were given pre-
retrofit and post-retrofit energy data, and asked to predict some pre-retrofit data that were withheld. Four 
contestants submitted predictions for a five variables from two buildings. The CoV ranged from 3% to 
56% depending on the building, variable, and contestant. The average CoV ranged from 17% for the best 
contestant to 30% for the worst. 
 
The CoV of the recalibrated complaint model, which is 57%, is within the range of CoVs reported for 
energy models, though it is greater than the average CoVs of calibrated energy models. 

5.1.2 Accuracy of Comfort Models 
Another benchmark for the accuracy of the complaint prediction model is the accuracy of comfort 
models. de Dear et al. (1997) used linear regressions to relate neutral indoor operative temperature to 
mean outdoor effective temperature. For naturally ventilated buildings, they found that the correlation 
coefficient relating the two was r = 0.65. They also compared predicted neutrality based on PMV 
calculations to mean outdoor effective temperature. For naturally ventilated buildings they found that the 
correlation coefficient relating predicted neutrality to mean outdoor effective temperature was r = 0.55. 
The former relationship is being used as the basis of an alternative for naturally ventilated buildings in 
ASHRAE Standard 55.  

5.2 Utilization 
 
The complaint prediction model has a number of practical uses. One is cost-benefit analysis of improving 
temperature control performance. Another is the determination of optimal temperature settings. A third 
involves its use in thermal comfort standards. These three applications are described in more detail below. 
 

5.2.1 Cost-Benefit Analysis 
Temperature control performance and complaint rates are not the same in all locations within a building. 
For example, Federspiel (2001) shows that complaint rates in a small fraction of zones can be more than 
10 times higher than in most zones. The complaint prediction model can be used to determine the cost-
benefit tradeoff from investing in improved control performance in order to reduce the operation and 
maintenance cost of responding to hot and cold complaints. Figures 11 and 12 show the minimum 
complaint rate as a function of 

BT�  and 
BT�� . These figures convey the same information. The only 

difference is that the statistic on the horizontal axis has been switched. 
 
The average values of these two statistics in Building F during the first temperature monitoring interval 
was 0.98 °F and 0.90 °F/hour. This corresponds to a predicted minimum complaint rate of 12.7 
complaints per year per 100K ft2. 
 



22 CBE SUMMARY REPORT   APRIL  2003  

Figure 11: Minimum complaint rate versus standard deviations. 

 

Figure 12: Minimum complaint rate versus standard deviations. 

 
To use these figures to determine the cost-benefit analysis, record the temperature in the space where a 
retrofit or engineering change is being considered. Compute 

BT�  and 
BT�� . Find the point on Figure 11 or 

12 that corresponds to these two statistics, and read the predicted complaint rate from the left-hand axis. 
Compute the predicted annual costs savings as follows: 
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� � LHRAS 7.12��       (17) 
 
where S  is the cost savings in dollars per year, A  is the area of the zone divided by 100K, R  is the 
predicted complaint rate from Figure 11 or 12, H  is the average number of hours to handle a complaint, 
and L  is the fully burdened hourly labor rate for technicians who handle complaints. Federspiel (2001) 
found that H = 1.85 hours. The U.S. Bureau of Labor Statistics estimates that the hourly wage for an 
HVAC mechanic in Sacramento, California, in 2001 was $20.85, and the ratio of total compensation to 
wage was 1.48. This gives L = $30.78/hour. The average labor rate that HVAC service companies in 
Sacramento charge their customers is $110/hour. 
 
If R  = 127 (10 times the minimum complaint rate corresponding to the median values of 

BT�  and 

BT�� during Interval 1 of Building F), then the annual potential cost reduction for a 1000 ft2 zone using the 
$30.78 labor rate is $65. Changes to the temperature controls that would likely reduce the variability, and 
therefore the complaint rate, include replacing pneumatic controllers with digital controllers, tuning the 
PID gains of digital controllers, and reducing the deadband of the controller.  

5.2.2 Optimal temperature settings 
We can compute the mean temperature that minimizes the total complaint rate as a function of the 
standard deviation and standard deviation of the rate of change of the building temperature. We refer to 
this temperature as the minimum discomfort temperature (MDT). Figure 13 shows curves of MDT for a 
range of these two statistics. The figure shows that MDT decreases slightly as the standard deviation of 
the building temperature increases. It also decreases slightly as the standard deviation of the rate of 
change of the building temperature increases.  
 

Figure 13: Minimum discomfort temperature versus standard deviations. 

 
Since indoor temperature affects energy consumption, we can combine the O&M cost of complaints with 
the energy cost, and determine the mean temperature that minimizes the sum of O&M cost and energy 
cost. We refer to this temperature as the minimum-cost temperature (MCT). Figure 14 shows MCT as a 
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function of the standard deviation and standard deviation of the rate of change of the building temperature 
for a fictitious 100K ft2 building in Sacramento California operating on the E-19 electrical energy tariff 
and the G-NR2 gas tariff, both offered by PG&E. We used a commercially available energy analysis 
program to estimate the impact of indoor temperature on energy costs. The simulated fictitious building 
has variable-air-volume (VAV) HVAC systems and two centrifugal chillers. We used the labor statistics 
cited above to convert complaint rates to O&M costs.  

 
Figure 14: Minimum-cost temperature versus standard deviations. 

 
The figure shows the benefit of good control performance. When the variability is low, the temperature 
can be raised higher to achieve greater energy savings because the cost of additional hot complaints is less 
when the variability is less.  

5.2.3 Impacts of Clothing, Metabolism, and Other Factors 
The complaint prediction model is based entirely on the statistical behavior of indoor air temperature. It 
does not explicitly use other factors such as clothing and metabolism even though they influence thermal 
comfort. This is intentional. Building designers do not know a priori what building occupants will wear or 
how much metabolic power it will take them to perform their work except in very general average terms. 
Building operators cannot continually survey occupant to see what they are wearing or how much they are 
exerting. They can continually monitor temperature, but sensors to measure radiant temperature, air 
velocity, and even humidity are rare in commercial buildings. 
 
It is well-known that clothing levels are correlated with outdoor temperature, and that indoor velocities 
are also correlated with outdoor temperature. de Dear et al. (1997) provide empirical functional 
relationships between clothing estimates and mean outdoor temperature and indoor velocity 
measurements and mean outdoor temperature. We tried models in which the mean complaint levels were 
linearly dependent on mean outdoor temperature. The thinking is that the mean values of both complaint 
levels should be higher when it is warmer outdoors because occupants are wearing less clothing and 
indoor air velocities are higher.  
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The mean outdoor temperatures for the buildings and data collection intervals are shown in Table 8 There 
was a wide range of outdoor temperatures because of seasonal and geographical differences.  
 

Table 8: Average temperatures (°F) for the monitoring intervals. 

 A B C D E F 
Interval 1 44.0 48.0 47.7 54.0 15.9 49.7 
Interval 2 - - - - 54.0 64.8 

 
We did not find that mean outdoor temperature improved the predictive capability of the model. The 
parameter estimator generally selected coefficients for the relationship between mean complaint level and 
mean outdoor temperature that were close to zero. It is possible that the minimum and maximum clothing 
that people can wear to avoid discomfort are less dependent on outdoor temperature than the clothing that 
they routinely wear under normal conditions. Although indoor velocity is correlated with outdoor 
temperature, the influence in buildings with HVAC is small. These factors combined with the fact that the 
complaint data in this study are very noisy may explain why there seems to be no influence of mean 
outdoor temperature on mean complaint levels. 
 
de Dear et al. (1997) found almost no correlation between mean outdoor temperature and estimated 
metabolic rates. However, metabolic rates can vary substantially as task requirements change. Walking 
from one part of a building to another can increase metabolic power considerably over the power required 
to sit still and read a document. 
 
The complaint prediction model distinguishes between complaints that occur on arrival and those that 
occur during the normally occupied period of the day. An arrival complaint occurs when the temperature 
is either higher than the hot complaint level or lower than the cold complaint level when the occupants 
arrive in the morning. This is different from an operating complaint, which occurs during the occupied 
period of the day when the temperature crosses above the hot complaint level or below the cold complaint 
level.  
 
On arrival occupants will generally have a higher metabolic power than during the occupied period 
because they were just walking. We compared arrival complaints with operating complaints in two ways. 
Figure 15 shows compares how arrival complaint rates and operating complaint rates are influenced by 
the mean and standard deviation of the indoor temperature. The values of T�  and T��  used in Figure 15 
are the same as those used in Figure 10. 
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Figure 15: Comparison of arrival complaint rate with operating complaint rate. 

 
There are three important features. The first is that the arrival complaint rate is much lower than the 
operating complaint rate. This is consistent with data reported by Federspiel (2001), which shows that the 
complaint rate is highest in the first half of the morning, but the extra early-morning complaints are a 
minor fraction of the total number of complaints. 
 
The second feature is that arrival complaints are less sensitive to the mean indoor temperature than 
operating complaints, and the third feature is that the mean indoor temperature that minimizes the 
frequency of arrival complaints is lower than the mean indoor temperature that minimizes operating 
complaints. Both of these features are consistent with an influence of metabolic rate on complaint 
behavior. Since metabolic rates are higher at arrival time, the optimal temperature at that time should be 
lower. Furthermore, the sensitivity of thermal comfort metrics such as PMV to temperature is less at 
elevated metabolic rates. That fact is consistent with the reduced sensitivity of arrival complaints to mean 
indoor temperature. 
 
Figure 16 shows the mean indoor temperature that minimizes arrival complaints and operating 
complaints. With perfect control (standard deviation zero), the temperature that minimizes the frequency 
of arrival complaints is 0.7 °F degrees lower than the temperature that minimizes operating complaints. 
The difference grows to 1.2 °F as the standard deviation of the temperature grows to 4 °F. 
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Figure 16: Mean temperatures that minimize arrival and operating complaints. 

 
The fact that the optimal mean temperature for arrival complaints differs from that of operating 
complaints has important implications for building control and operation. It implies that buildings should 
be slightly cooler at the start of the work day than later in the day. Optimal night setback strategies are 
typically designed to return the building temperature to it’s fixed operating level at the time that 
occupants arrive. The complaint prediction model predicts that doing so is suboptimal. When heating, 
temperatures should be set to a lower level at night and over the weekend. The controls should return the 
temperature to a level that is approximately 1 °F lower than the operating temperature at the arrival time. 
Doing this will reduce discomfort and reduce energy consumption. When cooling, the building should be 
pre-cooled so that the arrival temperature is approximately 1 °F lower than the operating temperature, and 
the temperature should be allowed to float up to the operating temperature. Doing so will reduce 
discomfort and shift cooling loads to an earlier part of the day. Rabl and Norford (1991) and Morris et al. 
(1994) describe strategies for pre-cooling buildings. 
 

5.2.4 An Economic Criterion for ASHRAE Standard 55 
The current ASHRAE thermal comfort standard, ASHRAE Standard 55, specifies a level of comfort 
regardless of the amount or cost of energy required to achieve that level of comfort. The standard has 
been formulated this way in part because there has not been methodology for quantitatively estimating the 
economic value of comfort, or conversely, the economic cost of discomfort. The complaint prediction 
model now allows us to do that. 
 
Consider the case of August in Sacramento, California. Figure 17 shows two curves, the MDT and the 
MCT for the case where 

BT�� = 1.0 °F/hour, which is the average value of this statistic for Building F, and 
the most frequent (mode) for all the time series recorded in this study. The figure shows three regions, 
labeled A, B, and C, that fall above both curves, between the curves, and below both curves, respectively. 
Raising the average temperature into Region A increases the total cost (energy plus O&M cost of 
handling complaints) AND increases discomfort. Likewise, decreasing the average temperature into 
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Region C increases the total cost AND discomfort. However, in Region B there is a tradeoff between total 
cost and discomfort. In Region B, raising the temperature reduces total cost, but at a penalty of more 
discomfort. 
 

Figure 17: Unacceptable (A & C) and acceptable (B) temperature regions. 

 
We propose that the MDT and the MCT form the basis for an economic criterion for ASHRAE Standard 
55. Temperatures greater than MCT or less than MDT are unacceptable because they are undesirable from 
the point of view of both economics and comfort. There is no rational reason to design or operate 
buildings for temperatures in regions A or C of Figure 17. 
 
To determine the acceptable upper and lower temperature limits, an energy analysis would be performed 
so that the influence of energy cost could be computed as a function of indoor temperature. It is becoming 
increasingly common that energy codes and standards require an energy analysis, so this will not 
constitute much additional engineering effort. The values of MCT and MDT with 

BT�  = 0.6 °F and 
BT�� = 

1.0 °F/hour should be used as the design standard conditions. These values are the most frequent (mode) 
in the data set from this study, and lower values do not significantly increase the temperature range.  
 
Figure 18 shows the MCT – MDT interval for summer in Sacramento superimposed on the ASHRAE 
comfort chart. The interval overlaps both the Winter (clo = 1.0) and Summer (clo = 0.5) comfort zones. It 
is narrower that both the high-clo and low-clo comfort zones. 
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Figure 18: MCT - MDT interval for Sacramento superimposed on the ASHRAE comfort chart. 

 
To use the MCT – MDT interval, designers would have to go through the following steps. First they 
would have to ensure that their design meets the requirements of energy codes and standards. Then they 
would have to determine the dependence of energy consumption on indoor temperature for the design 
outdoor condition using computer simulations. Most energy simulation codes have deadbands for 
thermostats that must be set to zero in order to determine this relationship. We found that running the 
simulation in increments of 2 °F and interpolating between the points is sufficient. Next the designer must 
compute MCT at the design conditions of 

BT�  = 0.6 °F and 
BT�� = 1.0 °F/hour. This involves searching 

for the value of the mean temperature that minimizes the sum of energy cost and complaint cost.  The 
designer must look up the prevailing wage for the area where the building will be located as described in 
Section 5.2.1 to be able to compute complaint cost.  

6 CONCLUSIONS 
The complaint prediction model originally proposed by Federspiel (2000) was analyzed and re-calibrated 
with data from six buildings in three new geographical areas comprising a total of 2.4 million square feet 
of floor space. The significant findings from this study are as follows: 
 

1. The re-calibrated model predicts lower MDT than the original model. 
2. The re-calibrated model predicts higher minimum complaint rates than the original model. 
3. The re-calibrated model is more asymmetrical than the original model. The hot complaint rate 

increases faster with increasing temperature than the cold complaint rate increases with 
decreasing temperature. 

4. The accuracy of the model is comparable to the accuracy of uncalibrated energy models and field 
measurements of neutral temperature. 

5. The model can be used to perform cost-benefit analyses of retrofits and engineering efforts that 
would improve temperature control performance. 

6. The model can be used to select optimal temperature at which to operate buildings. 

MCT – MDT interval 
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7. The model can be used as the basis of an economic criterion for thermal comfort standards. Doing 
so eliminates the need to make arbitrary assessments of what constitutes “acceptable”, and allows 
the thermal comfort standard to be elastic with respect to the amount and cost of energy required 
to provide comfort. 
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